

Fuzzy Logic based Logical Query Answering on Knowledge Graphs

Overview

We present **FuzzQE**, a fuzzy logic based query embedding framework for answering First-Order Logic (FOL) queries over KGs.

- FuzzQE follows product logic to define logical operators in a principled and learning free manner.
- Extensive experiments on two benchmark datasets demonstrate that FuzzQE achieves significantly better performance in answering FOL queries compared to the state-of-the-art methods.
- When trained with only KG link prediction, FuzzQE can achieve comparable performance with the systems trained with all FOL queries. This is a huge advantage in real-world applications, since complex FOL training queries are often arduous to collect and not available in most real-world KGs.

Logic Laws and Desired Logical Query **Answering Model Properties**

$\phi(q, e)$ estimates the probability that entity e answers query q

	s and derived logic laws h classic logic and fuzzy log کم	Desired model property according to the logic law
	Logic Law	Model Property
\wedge	Conjunction elimination $\varphi \land \psi \rightarrow \varphi$ $\varphi \land \psi \rightarrow \psi$	$\phi(q_1 \land q_2, e) \leq \phi(q_1, e) \phi(q_1 \land q_2, e) \leq \phi(q_2, e)$
	$\begin{array}{l} \text{Commutativity} \\ \varphi \wedge \psi \leftrightarrow \psi \wedge \varphi \end{array}$	$\phi((q_1 \land q_2), e) = \phi((q_2 \land q_1), e)$
	Associativity $(\varphi \land \psi) \land \chi \leftrightarrow$ $\varphi \land (\psi \land \chi)$	$ \begin{aligned} \phi((q_1 \wedge q_2) \wedge q_3, e) \\ = \phi(q_1 \wedge (q_2 \wedge q_3), e) \end{aligned} $
\vee	Disjunction amplification $\varphi \rightarrow \varphi \lor \psi$ $\varphi \rightarrow \varphi \lor \varphi$	$\phi(q_1 \lor q_2, e) \ge \phi(q_1, e)$ $\phi(q_1 \lor q_2, e) \ge \phi(q_2, e)$
	$\begin{array}{l} \text{Commutativity} \\ \varphi \lor \psi \leftrightarrow \psi \lor \varphi \end{array}$	$\phi((q_1 \lor q_2), e) = \phi((q_2 \lor q_1), e)$
	Associativity $(\varphi \lor \psi) \lor \chi \leftrightarrow$ $\varphi \lor (\psi \lor \chi)$	$\phi((q_1 \lor q_2) \lor q_3, e) \\= \phi(q_1 \lor (q_2 \lor q_3), e)$
-	Involution $\neg \neg \varphi \rightarrow \varphi$	$\phi(q, e) = \phi(\neg \neg q, e)$
	Non-contradiction $\varphi \wedge \neg \varphi \rightarrow \overline{0}$	$\phi(q,e)\uparrow \Rightarrow \phi(\neg q,e)\downarrow$

Xuelu Chen, Ziniu Hu, Yizhou Sun

First-Order Logic (FOL) Queries $q = V_{?}: \exists V \quad (Compose(John Lennon, V) \lor Compose(Paul McCartney, V))$ $\land \neg AwardedTo(Grammy Award, V) \land SungBy(V, V_{?})$ Compose Union John Lennor - Intersection SungBy Compose Paul **McCartney Query target** Grammy AwardedTo node Negation Award **Anchor entity**

Comparison with Existing Works on Desired Model Properties

- Proposition 1. Our conjunction operator \mathcal{C} is commutative, associative, and satisfies conjunction elimination.
- Proposition 2. Our disjunction operator \mathcal{D} is commutative, associative, and satisfies disjunction amplification.
- Proposition 3. Our negation operator \mathcal{N} is involutory and satisfies non-contradiction.

	\wedge										
	Expressivity (Closed)	Com.	Asso.	Elim.	Expressivity (Closed)	Com.	Asso.	Ampli.	Expressivity (Closed)	Inv.	Non-Contra.
GQE	$\checkmark(\checkmark)$	\checkmark	\checkmark	×	√(X)	\checkmark	\checkmark	\checkmark	×	N/A	N/A
Query2Box	$\checkmark(\checkmark)$	\checkmark	\checkmark	\checkmark	√ (X)	\checkmark	\checkmark	\checkmark	×	N/A	N/A
BetaE _{DNF}	$\checkmark(\checkmark)$	\checkmark	\checkmark	×	√ (X)	\checkmark	\checkmark	\checkmark	$\checkmark(\checkmark)$	\checkmark	×
BetaE _{DM}	$\checkmark(\checkmark)$	\checkmark	\checkmark	X	$\checkmark(\checkmark)$	\checkmark	\checkmark	X	$\checkmark(\checkmark)$	\checkmark	×
FuzzQE	$\checkmark(\checkmark)$	\checkmark	\checkmark	\checkmark	$\checkmark(\checkmark)$	\checkmark	\checkmark	\checkmark	$\checkmark(\checkmark)$	\checkmark	\checkmark

Our model satisfies all these desired properties!

Experiments

.

Model	avg_p	avg_n	1p	2p	3p	2i	3i	pi	ip	2u	up	2in	3in	inp	pin	pni
							FB15k-2	237								
GQE	16.3	-	35.0	7.2	5.3	23.3	34.6	16.5	10.7	8.2	5.7	-	-	-	-	-
Query2Box	20.1	-	40.6	9.4	6.8	29.5	42.3	21.2	12.6	11.3	7.6	-	-	-	-	-
BetaE	20.9	5.5	39.0	10.9	10.0	28.8	42.5	22.4	12.6	12.4	9.7	5.1	7.9	7.4	3.5	3.4
FuzzQE	24.0	7.8	42.8	12.9	10.3	33.3	46.9	26.9	17.8	14.6	10.3	8.5	11.6	7.8	5.2	5.8
Train witl	h only L	_ink Pre	edictio	า												
Train wit	h only L avg _p	ink Pre	ediction	n 2p	3р	2i	3i	pi	ip	2u	up	2in	3in	inp	pin	pn
					3p	2i	3i FB15k-	-	ip	2u	up	2in	3in	inp	pin	pn
					3p 5.4	2i 25.0		-	ip 10.9	2u 11.9	up 6.2	2in	3in	inp -	pin -	pn -
Model GQE	avg _p	avg _n	1p	2p			FB15k-	237				2in 	3in 	inp - -	pin - -	pn -
Model	avg _p 17.7	avg _n	1p 41.6	2p 7.9	5.4	25.0	FB15k- 33.6	237 16.3	10.9	11.9	6.2	_	3in _ _ 1.4	inp _ _ 0.1	pin 0.1	pn - - 0.2

Model	avg_p	avg_n	1p	2p	3p	2i	3i	pi	ip
							FB15k-2	37	
GQE	17.7	-	41.6	7.9	5.4	25.0	33.6	16.3	10.9
Query2Box	18.2	-	42.6	6.9	4.7	27.3	36.8	17.5	11.1
BetaE	19.0	0.4	53.1	6.0	3.9	32.0	37.7	15.8	8.5
FuzzQE	21.9	6.6	44.0	10.8	8.6	32.3	41.4	22.7	15.1

١g

FuzzQE

- Relation Projection $\mathbf{W}_r = \sum_{i=1}^m a_{ri} \mathbf{M}_i$ $q = \sigma(W_r e + b_r)$
- **Fuzzy Logic based Logic Operators**

Product Logic

A fuzzy logic system developed with the classical logic axiom and two extra axioms. Satisfy all the listed logic laws.

 $q_1 \wedge q_2$: $\mathcal{C}(\boldsymbol{q_1}, \boldsymbol{q_2}) = \boldsymbol{q_1} \circ \boldsymbol{q_2}$ $q_1 \vee q_2$: $\mathcal{D}(q_1, q_2) = q_1 + q_2 - q_1 \circ q_2$ $\mathcal{N}(\boldsymbol{q}) = \boldsymbol{1} - \boldsymbol{q}$ $\neg q$: Loss Function

 $L = -\log \sigma(\phi(q, e) - \gamma) - \sum_{i=1}^{n} \frac{1}{n} \log \sigma(\gamma - \phi(q, e'))$

References

Ren, H., Hu, W., and Leskovec, J. Query2box: Reasoning over knowledge graphs in vector space using box embeddings. In 8th International Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020.

Hamilton, W. L., Bajaj, P., Zitnik, M., Jurafsky, D., and Leskovec, J. Embedding logical queries on knowledge graphs. In Advances in Neural Information Processing Systems 31: Annual Conference on Neural Information Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada, pp. 2030–2041, 2018.

Ren. H. and Leskovec, J. Beta embeddings for multi-hop logical reasoning in knowledge graphs. In Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020.

Zimmermann, H. Fuzzy Set Theory - and Its Applications. Springer, 1991. ISBN 978-94-015-7951-3 doi: 10.1007/978-94-015-7949-0.